Anticoagulation in Kidney Disease: Considerations for Patients with Nephrotic Syndrome

Vimal K. Derebail
Glomerular Disease Collaborative Network
May 20th, 2017

Disclosures

- Employer: University of North Carolina at Chapel Hill
- Research Funding: NIH, NephCure Kidney International
- Clinical Trial Participation as site PI:
 - Retrophin
 - Mallinkrodt

- No disclosures relevant to this presentation.
Outline

- Venous thromboembolic events (VTE)
 - Who is at risk of thromboembolic events?
- Pathophysiology
 - Why are patients with nephrotic syndrome at higher risk of VTE?
- Prophylactic anticoagulation
 - Who should receive prophylactic anticoagulation?
- What prophylactic anticoagulation?
 - Warfarin or others?

Case 1

- 44 yo AAM – presented to his physician with heavy proteinuria detected on routine physical.
- UPC 4.2, Albumin of 3.3 g/dl, Creatinine of 1.33 mg/dl.
- Renal Bx demonstrates FSGS (with ?collapsing lesion).
- Started on Prednisone 1mg/kg ; cyclosporine 100mg bid.
- Seen in follow up 6 wks later and UPC 1.1.
- He reads on the internet that nephrotic syndrome places him at high risk for a blood clot and wants to know if he should be on anticoagulation. What do you tell him?
Case 2

- **51 yo WM** – prior hx of HTN, recently with more difficult to control hypertension and worsening hyperlipidemia.
- Developed LE that worsened over weeks – found to have extensive L LE DVT extending into the IVC. On Chest CT also found to have bilateral PE.
- Received “lytic” therapy and discharged on **apixaban 2.5mg bid**.
- In follow up 2 months later, has recurrent LE edema - repeat venography demonstrates **recurrent DVT with IVC extension**.
- Placed on fondaparinux and referred to UNC Hematology.
 - Noted by hematologist to have heavy proteinuria (UPC >13)
- Receives thrombolytic therapy again and discharged on **apixaban 5mg bid**.
- Renal biopsy deferred due to anticoagulation and thrombolysis
 - **PLA2r Ab testing - 424 RU/mL**

How common is venous thromboembolism in patients with nephrotic syndrome?
What is the risk of VTE in the nephrotic syndrome?

- Overall incidence of venous thromboembolism (VTE) reported to be ~25% in patients with nephrotic syndrome (NS).
- Varies among forms of NS.
- Varies by intensity and method of screening.
 - Clinically observed vs prospectively “investigated”

Epidemiology of VTE in NS

<table>
<thead>
<tr>
<th>Publication Year</th>
<th>Author</th>
<th>N</th>
<th>TE</th>
<th>% TE</th>
<th>Study Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>Bennet et al. (11)</td>
<td>21</td>
<td>6</td>
<td>28.6</td>
<td>Prospective</td>
<td>No histology data</td>
</tr>
<tr>
<td>1980</td>
<td>Llach et al. (22)</td>
<td>151</td>
<td>33</td>
<td>21.9</td>
<td>Prospective</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>Andrassy et al. (10)</td>
<td>84</td>
<td>29</td>
<td>34.5</td>
<td>Prospective</td>
<td>RVT, DVT, and PE studied</td>
</tr>
<tr>
<td>1981</td>
<td>Chugh et al. (13)</td>
<td>44</td>
<td>11</td>
<td>25.0</td>
<td>Retrospective</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>Kuhlmann et al. (18)</td>
<td>17</td>
<td>4</td>
<td>23.5</td>
<td>Prospective</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>Wagoner et al. (27)</td>
<td>27</td>
<td>14</td>
<td>51.9</td>
<td>Prospective</td>
<td>Membranous nephropathy only</td>
</tr>
<tr>
<td>1988</td>
<td>Velasquez et al. (26)</td>
<td>26</td>
<td>11</td>
<td>42.5</td>
<td>Prospective</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Cherven et al. (12)</td>
<td>89</td>
<td>29</td>
<td>32.6</td>
<td>Prospective</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Wysokinski et al. (28)</td>
<td>218</td>
<td>44</td>
<td>20.2</td>
<td>Retrospective</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>677</td>
<td>181</td>
<td>26.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observed VTE

Risk of thromboembolism by type of nephropathies.

<table>
<thead>
<tr>
<th></th>
<th>Total (n=298)</th>
<th>MG (n=72)</th>
<th>MCD (n=49)</th>
<th>FSGS (n=36)</th>
<th>MPGN (n=26)</th>
<th>DN (n=32)</th>
<th>NOS (n=83)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTE Event, n</td>
<td>29</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Obs period, y</td>
<td>2857</td>
<td>716</td>
<td>645</td>
<td>362</td>
<td>378</td>
<td>171</td>
<td>585</td>
</tr>
<tr>
<td>Annual incidence</td>
<td>1.02</td>
<td>1.40</td>
<td>0.62</td>
<td>1.38</td>
<td>1.32</td>
<td>0.58</td>
<td>0.68</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.68 - 1.46</td>
<td>0.67 - 2.57</td>
<td>0.17 - 1.59</td>
<td>0.45 - 3.22</td>
<td>0.43 - 3.09</td>
<td>0.01 - 3.26</td>
<td>0.19 - 1.75</td>
</tr>
</tbody>
</table>

- Median time to VTE was 0.9 years.
- Pulmonary embolism (38%), DVT (34%), combined PE and DVT (10%), combined PE and renal vein thrombosis (10%), renal vein thrombosis (3%), mesenteric vein thrombosis (3%).
- Over first 6 mos – annual incidence 9.85% (95%CI, 5.38-16.52)

VTE risk varies by disease type

<table>
<thead>
<tr>
<th></th>
<th>Overall, N = 1313</th>
<th>FSGS, N = 370</th>
<th>IgAN, N = 548</th>
<th>MN, N = 395</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with VTE (N, %)</td>
<td>44 (3.4)</td>
<td>11 (3.0)</td>
<td>2 (0.4)</td>
<td>31 (7.9)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Number of VTE by type

- DVT: 10, 4, 1, 5
- PE: 20, 8, 1, 11
- RVT: 19, 2, 0, 17
- Other: 4, 0, 0, 4

Days to first VTE (med, IQR)

- MN demonstrated the highest risk of VTE
- MN -> 10-fold increase in likelihood of VTE compared to IgA
 - Nearly a two-fold increase when compared to FSGS patients

Clinical measures associated with VTE risk

<table>
<thead>
<tr>
<th>Variable</th>
<th>no. patients/</th>
<th>HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prothrombin, g/dL</td>
<td>92/272</td>
<td>1.0, reference</td>
<td>0.08</td>
</tr>
<tr>
<td>36 - 48</td>
<td>92/272</td>
<td>1.0, reference</td>
<td>0.08</td>
</tr>
<tr>
<td>46 - 61</td>
<td>91/272</td>
<td>3.1 (1.6 - 5.5)</td>
<td></td>
</tr>
<tr>
<td>≥ 82</td>
<td>89/272</td>
<td>6.2 (1.1 - 23.6)</td>
<td></td>
</tr>
<tr>
<td>eGFR, ml/min/1.73m²</td>
<td>≥ 60</td>
<td>1.0, reference</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>127/251</td>
<td>1.0, reference</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>85/251</td>
<td>0.9 (0.5 - 1.6)</td>
<td></td>
</tr>
<tr>
<td>Serum albumin, g/dL</td>
<td>≥ 2.4</td>
<td>1.0, reference</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>50/184</td>
<td>1.0, reference</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>87/184</td>
<td>1.6 (0.3 - 8.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 2.4</td>
<td>1.6 (0.3 - 8.2)</td>
<td></td>
</tr>
<tr>
<td>F a ratio</td>
<td>157/291</td>
<td>5.6 (1.3 - 28.2)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 5: Multivariable analysis of risk of venous thromboembolism

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex</td>
<td>2.4</td>
<td>1.1 - 5.3</td>
<td>0.02</td>
</tr>
<tr>
<td>Cancer history</td>
<td>2.4</td>
<td>0.8 - 6.1</td>
<td>0.07</td>
</tr>
<tr>
<td>Albumin at presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 38 g/l</td>
<td>2.7</td>
<td>0.3 - 2.9</td>
<td>0.4</td>
</tr>
<tr>
<td>29-38 g/l</td>
<td>2.7</td>
<td>0.3 - 2.9</td>
<td>0.4</td>
</tr>
<tr>
<td>< 29 g/l</td>
<td>9.6</td>
<td>1.2 - 76.4</td>
<td>0.03</td>
</tr>
<tr>
<td>Proteinuria at presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1g/day</td>
<td>1.6</td>
<td>0.2 - 13.9</td>
<td>0.6</td>
</tr>
<tr>
<td>1-3.5 g/day</td>
<td>1.6</td>
<td>0.2 - 13.9</td>
<td>0.6</td>
</tr>
<tr>
<td>3.6-8 g/day</td>
<td>1.9</td>
<td>0.2 - 14.9</td>
<td>0.5</td>
</tr>
<tr>
<td>> 8 g/day</td>
<td>2.6</td>
<td>0.3 - 20.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Underlying disease

<table>
<thead>
<tr>
<th>Reference</th>
<th>0.0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgAN</td>
<td>5.9</td>
</tr>
<tr>
<td>FSGS</td>
<td>10.9</td>
</tr>
<tr>
<td>MN</td>
<td></td>
</tr>
</tbody>
</table>

Patients with Membranous Nephropathy

Study Population N = 807

Glomerular Disease Collaborative Network (GDCN) N = 412
Toronto Glomerular Network Registry (TGNR) N = 395
Membranous Nephropathy

- Combined cohort from UNC/GDCN + U of Toronto/TGNR
- Total of 807 patients
- 65 events (7.2%), 0.017 per person-year
 - 26 RVT, 21 DVT, 27 PE
- At the time of VTE:
 - Upro 9.9 g/day (1.1, 40.0)
 - Serum albumin of 2.2 ± 0.6 g/dL (0.6, 3.7)
 - Mean eGFR of 70.5 ± 27.8 ml/min/1.73m²

Hypoalbuminemia and VTE in MN

Table 3. Multivariate analysis to identify predictors of VTE

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>P Value (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnostic biopsy (yr)</td>
<td>0.99</td>
<td>0.97, 1.01</td>
<td>0.39</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>2.13</td>
<td>1.02, 4.44</td>
<td>0.04</td>
</tr>
<tr>
<td>24-hour proteinuria (g/d)</td>
<td>0.98</td>
<td>0.93, 1.04</td>
<td>0.59</td>
</tr>
<tr>
<td>Immunosuppressive therapy, any</td>
<td>1.72</td>
<td>0.85, 3.47</td>
<td>0.13</td>
</tr>
<tr>
<td>Site of registry (GDCN/TGNR)</td>
<td>0.67</td>
<td>0.26, 1.34</td>
<td>0.20</td>
</tr>
<tr>
<td>Serum albumin (g/dl) (^b)</td>
<td>2.13</td>
<td>1.32, 3.46</td>
<td>0.002</td>
</tr>
</tbody>
</table>

\(^a\) P value was calculated by logistic model evaluating the association of serum albumin while controlling for age at diagnostic biopsy, sex, 24-hour proteinuria, immunosuppressive therapy, and site of registry.

\(^b\) Per each g/dl decrease in serum albumin.

Clinical measures and VTE in FSGS

- Cross-sectional study of 120 Patients with FSGS (all with serum albumin < 3.0 g/dl)
- 10% found to have VTE by some form of imaging
- In univariate analyses, VTE associated with:
 - Relapse of NS
 - D-dimer
 - "Hemoconcentration"

Why is the Nephrotic Syndrome so prothrombotic?

Coagulation/Anticoagulation

- Albumin roughly 66kD in size
- Elevation in larger size procoagulant proteins
 - Fibrinogen, Factor V, Factor VIII (>300 kD)
- Anticoagulant proteins smaller in size thought to be lost in urine
 - Antithrombin (65kD)
 - most consistently demonstrated to be decreased
 - Protein C (62 kD)
 - Protein S (69 kD)
 - about 60-70% bound to C4b-binding protein

Inconsistent findings among various studies

Imbalance in Hemostasis

<table>
<thead>
<tr>
<th></th>
<th>Anti-Thrombotic</th>
<th>Pro-Thrombotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procoagulant</td>
<td>N or ↓ factor XI (160)(^5)</td>
<td>N or ↓ factor XII (80)(^{5,49})</td>
</tr>
<tr>
<td></td>
<td>↓ N, or ↓ factor II (69)(^5)</td>
<td>↓ Plt Count(^{3,50,51})</td>
</tr>
<tr>
<td></td>
<td>↓ N, or ↓ factor VII (50)(^5)</td>
<td>↓vWF (variable)(^4)</td>
</tr>
<tr>
<td></td>
<td>↓ N, or ↓ factor IX (58)(^5)</td>
<td>↑ fibrinogen (340)(^5)</td>
</tr>
<tr>
<td></td>
<td>↓ or ↑ Plt Function(^4,48)</td>
<td>↑↑ factor V (330)(^6)</td>
</tr>
<tr>
<td>Anticoagulant</td>
<td>↑ protein C (62)(^{1,14,54,55})</td>
<td>↓ protein Z (62)(^{43,54})</td>
</tr>
<tr>
<td></td>
<td>↓ N, or ↓ protein S (69)(^{1,14,54})</td>
<td>↓ or ↓ AT (65)(^{1,14,54})</td>
</tr>
<tr>
<td>Profibrinolytic</td>
<td>↑ N, or ↓ a(^2)-AP (70)(^6)</td>
<td>↓ Plasminogen (92)(^6)</td>
</tr>
<tr>
<td></td>
<td>↓ N, or ↓ IPA (72)(^5,56)</td>
<td>↓ N, or ↓ IPA (72)(^5,56)</td>
</tr>
<tr>
<td>Antifibrinolytic</td>
<td>↓ a(^2)-AT (54)(^8)</td>
<td>↑ Lp(a) (750)(^8)</td>
</tr>
<tr>
<td>Other</td>
<td>↓ or ↑ t-PAI (52)(^{4,42})</td>
<td>↑↑ a(^2)-M (725)(^8)</td>
</tr>
<tr>
<td></td>
<td>*Thrombophilia</td>
<td>RBC Aggregation(^9)</td>
</tr>
<tr>
<td></td>
<td>*APL</td>
<td>Clot Structure(^9,62)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperlipidemia(^8)</td>
</tr>
</tbody>
</table>

Altered Clot Structure

Hyperlipidemia and Coagulation

- In familial hyperlipidemia, oxidized forms of LDL (oxLDL) are markedly elevated
- Associated with elevations in microparticle Tissue Factor
- Observational data to suggest statins associated with lower VTE risk in NS

Global coagulation assays

- Thromboelastography

Figure captions:
Thromboelastography in NS

<table>
<thead>
<tr>
<th>Variables</th>
<th>Controls</th>
<th>MCD, S Alb < 2 g/dl</th>
<th>MN, S Alb < 2 g/dl</th>
<th>MCD, S Alb 2-3 g/dl</th>
<th>MN, S Alb 2-3 g/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (min)</td>
<td>7.3 ± 1.1</td>
<td>6.7 ± 1.0</td>
<td>5.5 ± 0.8*</td>
<td>7.2 ± 1.5</td>
<td>6.6 ± 1.2*</td>
</tr>
<tr>
<td>α-angle (deg)</td>
<td>57.7 ± 5.6</td>
<td>68.9 ± 5.1*</td>
<td>74.8 ± 3.2*</td>
<td>65.5 ± 6.6*</td>
<td>68.9 ± 6.2*</td>
</tr>
<tr>
<td>MA (mm)</td>
<td>56.6 ± 4.9</td>
<td>71.1 ± 5.4*</td>
<td>73.3 ± 4.8*</td>
<td>68.1 ± 5.0*</td>
<td>70.9 ± 5.4*</td>
</tr>
<tr>
<td>Cl</td>
<td>-1.9 ± 1.7</td>
<td>1.24 ± 1.3*</td>
<td>2.8 ± 1.1*</td>
<td>0.1 ± 1.98*</td>
<td>1.24 ± 1.2*</td>
</tr>
</tbody>
</table>

* p<0.05, vs. control

- Suggests that entire system - activated intrinsic pathway, fibrinogen, platelet function and fibrin-platelet interaction in MN - is accelerated.
- Intrinsic pathway may be more activated in MN when compared to MCD.

Thromboelastography in NS

- In cohort of 235 MN patients, demonstrated similar findings of hypercoagulability in 92 (38%).
- Correlated with low serum albumin.
- Among the hypercoagulable patients, measures of coagulation by TEG were attenuated with statin therapy.

Other hematologic abnormalities

- **Microparticle production**
 - Demonstrated to be increased in children and adults with NS
 - Express phospholipid and other procoagulant molecules
 - In MN and MCD, microparticles increased in number
 - Derived from platelets, RBCs and endothelial cells
 - Correlated with total cholesterol and albumin

Limits to understanding pathophysiology

- **Cormobidities**
 - Central venous catheter placement
 - Prolonged immobilization/hospitalization
 - Recent surgical intervention
 - Other hypercoaguable states
 - Genetic predisposition (Factor V Leiden, prothrombin gene mutation)
 - Antiphospholipid antibodies, acquired thrombophilia

- **Lack of prospective, systematic studies**
 - Many studies have evaluated one or a few components of coagulation
 - Lack of prospective association with thromboembolic event

When should we anticoagulate prophylactically (and how)?

Management after a VTE event

“Traditional Approach”

• Typically 3-6 month of anticoagulation and would continue as long as patient remains hypoalbuminemic (opinion)

• Initial therapy with heparin (or LMWH)

• Followed by warfarin anticoagulation for the remainder of therapy
Personalized prophylactic anticoagulation decision analysis in patients with membranous nephropathy

Taewoo Lee1,2, Andrea K. Biddle3, Sofia Lionaki1,4, Vimal K. Derebail1, Sean J. Barbour5, Sameer Tannous1, Michelle A. Hladunewich3, Yichun Hu1, Caroline J. Poulton1, Shannon L. Mahoney1, J. Charles Jennette1,6, Susan L. Hogan1, Ronald J. Falk1, Daniel C. Cattran9, Heather N. Reich5,7 and Patrick H. Nachman1,7

1 UNC Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 2 Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; 3 Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 4 Laiko Hospital, Athens, Greece; 5 Division of Nephrology, Department of Medicine, University of Toronto, and Toronto Glomerulonephritis Registry, Toronto, Ontario, Canada and 6 Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Prophylactic use of anticoagulation (in Membranous Nephropathy)

1) Risk for VTE varies in case-by-case (depends on hypoalbuminemia)

2) Balancing the “Benefit” (VTE prevention) and “Risk” (bleeding complications)

The purpose:
Create a practical decision tool tailored to an individualized risk for VTE (hypoalbuminemia) and bleeding.

Input data to the model

- Incidence rate of VTE
- From the pooled inception cohort of GDCN and TGNR (N=539)
- Incidence rate of major bleeding
- From the ATRIA study (N=9186)

<table>
<thead>
<tr>
<th>sAlb < g/dL</th>
<th>Events/100 PY (95% C.I.)</th>
<th>Risk Category (Point)</th>
<th>Events/100 PY (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td><3.0</td>
<td>3.7 (2.4-5.5)</td>
<td>Low (0-3)</td>
<td>0.8 (0.7-0.9)</td>
</tr>
<tr>
<td><2.8</td>
<td>4.3 (2.7-6.4)</td>
<td>Interm (4)</td>
<td>2.6 (2.3-3.0)</td>
</tr>
<tr>
<td><2.5</td>
<td>6.5 (4.0-9.9)</td>
<td>High (5-10)</td>
<td>5.8 (5.0-6.6)</td>
</tr>
<tr>
<td><2.3</td>
<td>8.5 (5.0-13.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><2.0</td>
<td>11.4 (5.7-20.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probabilistic Sensitivity Analysis

- Factors considered in the sensitivity analysis:
 - Range of incidence rate of VTE
 - Range of incidence rate of bleeding
 - Range of efficacy of anticoagulation
 - Range of fatality rate from VTE or bleed

- “Monte-Carlo Simulation” runs a 1,000 simulations using each time a random sampling of distributed probabilities for each transition state

Imperial College

Proposed prophylaxis algorithm

1. Determine the risk of major bleeding
 - Low
 - Intermediate
 - High
2. Look at the serum albumin level
 - No prophylaxis and anticoagulation
3. Look at the benefit-to-risk acceptability curve

Decision Approach

1. Determine the risk of major bleeding
 - Low
 - Intermediate
 - High
2. Look at the serum albumin level
3. Look at the benefit-to-risk acceptability curve

Imperial College RETROSPECTIVE Analysis

Table 1. Cohort characteristics at initiation of the prophylaxis regimen, both for the entire cohort and for each type of glomerulopathy

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All (n=143)</th>
<th>MN (n=58)</th>
<th>MCD (n=45)</th>
<th>FSGS (n=40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range) (yr)</td>
<td>48.7 (20.0–85.5)</td>
<td>54.3 (26.0–85.5)</td>
<td>48.7 (20.0–82.2)</td>
<td>48.1 (24.0–84.5)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>76 (53.1)</td>
<td>35 (60.3)</td>
<td>23 (51.1)</td>
<td>18 (45.0)</td>
</tr>
<tr>
<td>Female</td>
<td>67 (46.9)</td>
<td>23 (29.7)</td>
<td>22 (48.9)</td>
<td>22 (55.0)</td>
</tr>
<tr>
<td>Median follow-up (range) (wk)</td>
<td>154 (30–289)</td>
<td>129 (44–298)</td>
<td>191 (93–285)</td>
<td>159 (30–279)</td>
</tr>
<tr>
<td>Median serum creatinine at presentation (range) (mg/dl)</td>
<td>0.94 (0.54–4.43)</td>
<td>0.89 (0.38–2.85)</td>
<td>0.90 (0.54–3.59)</td>
<td>1.52 (0.54–4.43)</td>
</tr>
</tbody>
</table>

VTE in 2 patients (1.39%) within the first week after starting prophylaxis.
1 patient (0.69%) had GI bleed requiring hospitalization
2 patients (1.40%) had elective blood transfusions.

Is this more efficacious or safer than warfarin?

VTE Prophylaxis

- **Statins**
 - Potential role for prevention of VTE
 - Pleiotropic effects including enhanced fibrinolysis
 - In hyperlipidemic rat models, statin therapy reduces oxLDL and subsequent tissue factor production
 - A single retrospective cohort study suggesting statin use in NS is associated with a reduced annual incidence of VTE
 - (0.37% [95%CI, 0.12-1.15] vs 0.81% [95%CI, 0.50-1.30]).
 - (Resh M et al. Thromb Res. 2011;127(5):395-9)
Pharmacokinetic Considerations for Potential Prophylactic Agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>Renal dose adjustment</th>
<th>Protein binding</th>
<th>Evidence of use in NS</th>
<th>FDA approved for TE prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>No dose adjustment recommended</td>
<td>High (99%)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Heparin</td>
<td>No dose adjustment recommended</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Enoxaparin</td>
<td>CrCl <30 mL/min: 30 mg sc daily</td>
<td>Low</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>CrCl 30-50 mL/min and concomitant P-gp inhibitor: consider 75 mg bid; CrCl 15-30 mL/min: use 75 mg bid; do not use with P-gp inhibitor; CrCl <30 or hemodialysis: use not recommended</td>
<td>Low (35%)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>CrCl 30-50 mL/min: use with caution; CrCl <30 mL/min or hemodialysis: avoid use</td>
<td>High (92-95%)</td>
<td>No</td>
<td>post ortho. surgery</td>
</tr>
<tr>
<td>Apixaban</td>
<td>Age ≥80 years, body weight ≤60 kg, or Cr ≥1.5 mg/dL, recommended dose is 2.5 mg twice daily</td>
<td>High (87%)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>No dose adjustment recommended</td>
<td>High (98%)</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Summary

- Venous thromboembolism is common in primary nephrotic syndrome.
- Severity of risk depends upon the type of nephrotic syndrome.
 - Membranous nephropathy with highest risk.
- Hypoalbuminemia (and proteinuria) may be best indicator of VTE risk.
 - Consider other risks (e.g. smoking, immobilization, genetic predispositions)
- Pathophysiology is multifactorial.
 - Imbalance of coagulation and anticoagulation.
 - Impaired fibrinolysis, platelet activation and other hematologic changes.
 - May be exacerbated by hyperlipidemia.
Summary

- Prophylactic anticoagulation may be warranted in patients with moderate – severe hypoalbuminemia if their bleeding risk is not high (for membranous nephropathy)
 - ?perhaps also in other forms if additional risk factors?
- Statins may offer some protection
 - Treatment of hyperlipidemia should be addressed in NS
- Can D-dimer be used for screening those at risk? (I don’t know)
- Efficacy and safety of aspirin or anti-platelet agents has not been tested in NS
- Pharmacodynamics, efficacy and safety of Direct Oral Anticoagulants not tested in NS
 - Consider monitoring of drug levels (and/or pharmacokinetic studies)

Limitations in Understanding Prophylactic Anticoagulation in NS

- Scottish Biospy Registry – Adults undergoing kidney bx with primary NS from 2008 – 2013.
- 206 patients with median follow up of 2.9 (IQR 1.6 - 4.6) years.
- 14 (6.8%) with VTE
- Median time to diagnosis 36 days (IQR -22, 178)
- 6 VTE occurred prior to bx and 1 during remission
 - only 7 VTE that could be prevented
- Assume 75% reduction in VTE with prophylactic anticoagulation
 - Need 972 participants to achieve 80% in a clinical trial

Case 1

- **44 yo AAM with FSGS**
 - follow up UPC 1.1 and prior Albumin 3.3.
- **Does he need anticoagulation?**

- **1 week after returning clinic visit, develops L LE edema and diagnosed with acute DVT (following a 4.5 hour drive home from your clinic visit).**

Case 2

- **51 yo WM – probable membranous nephropathy**
 - Recurrent DVT/PE requiring thrombolytic therapy x 2
 - Now on Apixaban 5mg bid
- **Is this the right medication?**
- **Five months later – has screening LE dopplers**
 - Found to have acute on chronic DVT in L femoral vein
 - Apixaban level drawn 4 hrs post dose – 50 ng/ml (mean dose in healthy mean 128.5ng/mL*).
 - Switched back to fondaparinux and has remained on this without issue.